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Models chemical and biological processes to
understand and predict the effects of natural
perturbations and human activities, including
alternative management scenarios, on the ecosystem
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» Resilience

* Healthy, sustainable fishery

Key Scientific Questions

Can we forecast ecosystem services J
valued by stakeholders? 7

» Water quality (drinking, recreational,

There are many possible endpoints that would be useful to forecast (water levels, beach quality,

responses to management).

Some of these endpoints are easier than others to forecast (in terms of resource requirements).

Differing stakeholders place differential values on these endpoints.
Limited resources require some knowledge of stakeholder values so that resources can be

appropriately directed.

« Scenario based
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Key Scientific Questions

What are the appropriate spatial and temporal forecast scales?
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Most ecological forecasting is scenario-based. What will happen under differing
conditions or alternative management actions?
There may be opportunities for real-time forecasting of a limited suite of endpoints as

newer technologies emerge.



Key Scientific Questions /”;’

How accurate (precision + bias) do models
need to be for decision-makers?

* Rigorous skill assessment essential

Robert T. Clemen

* Quantified uncertainty is information
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An Introduction to

Decision Analysis

SECOND EDITION

Figure:
BMA = Bayesian Model Averaging
DLM = Dynamic Linear Model

Decision science is a well-developed discipline — though decision theory is not widely
known among environmental scientists. The book cover depicts one of many texts on
the subject.

What is the appropriate model complexity
for accurate forecasts?
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Models form a continuum from simple to complex.

Complex models require more information and make rigorous uncertainty quantification
difficult.

There is no single “best” approach for all applications.

The use of multiple models of differing complexity with rigorous skill assessment and
forecast averaging may be a useful approach.



What factors limit our ability to
accurately predict ecological
phenomena in the lakes?

» Data
* Process understanding

 Uncertainty propagation (physical +
chemistry + biology)

* “Social-ecological systems are
complex adaptive systems;

understanding how their component | | [
parts function doesn’t mean you can \ |

predict their overall behavior” ‘

Different decisions require differing levels of model forecast accuracy.
Identifying the biggest uncertainty sources helps to target resources to reduce
uncertainties. Models are a good tool to identify uncertainty sources.

Quote from “Resilience Thinking” by Walker and Salt.
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* Biophysical model of Yellow Perch recruitment
* Muskegon River mega-model

» Food web models (Lake Erie, Lake Michigan, Northern
Gulf of Mexico)

» Growth Rate Potential models (habitat quality models)
» Wind farm siting decision support model
* Gulf of Mexico Brown Shrimp model

» Saginaw Bay Bayesian Probability Network (Saginaw
Bayes)
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Gulf of Mexico Brown Shrimp ModelAﬂ,‘
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Used by Louisiana Office of Coastal
Protection and Restoration and the
Louisiana Coastal Authority Science
Board to evaluate Mississippi River
diversion effects on shrimp growth
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Some of our work extends beyond the Great Lakes to other coastal ecosystems.

We have a variety of tools — in this model we combined several of them.
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systems understanding howthe
parts function doesn’t mean you can predlct their
overall behavior”

Uncertainty arises from many sources within a model.

Some model components will be better understood than others.

It is not well-understood if piecing together the component parts allows accurate
forecasting — this question invites directed investigation.
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Partners and Stakeholders j

» LA Office of Coastal Protection * Lake Huron Technical Committee
and Restoration « Lake Huron Binational Partnership

» LCA Science Board » Wayne State University

* Louisiana State University « Eastern Michigan University

+ University of Maryland + Michigan State University

» Oregon State University + Duke University

+ University of Michigan « Nature Conservancy

* MI Dept. of Natural Res. and Env.
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Many partners and stakeholders.
Stakeholders and partners have become hard to differentiate in some projects.

Future Directions

» Continuity

» Adaptive
Updating

» Coupling/
Integration

* Uncertainty
Quantification,
Propagation

\Vn Great Lakes Environmental Research Laboratory Review — Ann Arbor, MI November 15-18, 2010

As technologies and understanding evolve our sense of the Great Lakes and their
behavior changes and our modeling approaches need to adapt.
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Questions?
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